close

WEFV2626EFCEYYYB15VEF

 

內容簡介

  Multiobjective Resource Management Problems (m-RMP) involves deciding how to divide a resource of limited availability among multiple demands in a way that optimizes current objectives. RMP is widely used to plan the optimal allocating or management resources process among various projects or business units for the maximum product and the minimum cost. “Resources” might be manpower, assets, raw materials, capital or anything else in limited supply. The solution method of RMP, however, has its own problems; this book identifies four of them along with the proposed methods to solve them. Mathematical models combined with effective multistage Genetic Algorithm (GA) approach help to develop a method for handling the m-RMP. The proposed approach not only can solve relatively large size problems but also has better performance than the conventional GA. And the proposed method provides more flexibility to m-RMP model which is the key to survive under severely competitive environment. We also believe that the proposed method can be adapted to other production-distribution planning and all m-RAP models.
In this book, four problems with m-RMP models will be clearly outlined and a multistage hybridized GA method for finding the best solution is then implemented. Comparison results with the conventional GA methods are also presented. This book also mentions several useful combinatorial optimization models in process system and proposed effective solution methods by using multistage GA.

  Note:Part of this book, once published in international journals SCI (Science Direct) inside, be accepted have five articles.

作者簡介:

林吉銘 (Chi-Ming Lin)

  電子信箱:chiminglin.tw@gmail.com

  學歷
  日本國立兵庫教育大學 教育學碩士
  日本早稻田大學資訊生產系統研究所5年研究
  日本公立前橋工科大學工學研究所 工學博士

  經歷
  教育部 專員
  國立台北教育大學 兼任講師
  台北市立教育大學 兼任講師
  中央警察大學 兼任講師
  國立台南師範大學 兼任講師
  美和技術學院 專任講師
  長庚技術學院 專任講師
  桃園縣公、私立托兒所 評鑑委員
  開南大學 專任講師(現職)

目錄

Acknowledgements3
Absract of Chinese 4
Abstract8

Chapter 1 Introduction2
1.1 Background of the Study2
1.2 Related Work7
1.2.1 Genetic Algorithm7
1.2.2 Multiobjective Genetic Algorithm36
1.3 Resource Management Problems54
1.4 Problems in this Dissertation58
1.4.1 A Solution Method for Human RMP Optimization58
1.4.2 A Solution Method for Asset RMP Optimization58
1.4.3 A Solution Method for Capital RMP Optimization58
1.4.4 A Solution Method for Staff Training RMP Optimization59
1.5 Organization of the Dissertation59

Chapter 2 Multistage Genetic Algorithm in Resource Management System65
2.1 Introduction65
2.2 Basic Idea67
2.2.1 Basic Idea Description67
2.2.2 Structure of Resource Management Solution System71
2.2.3 Multistage Network Framework74
2.2.4 Linearization76
2.2.5 Local Search78
2.3 Mathematical Formulations78
2.4 Constructing Multistage Network Structure81
2.4.1 Example One82
2.4.2 Example Two84
2.5 Solving Method by Multistage Genetic Algorithm90
2.5.1 Example Three93
2.5.2 Example Four99
2.6 Experimental Results102
2.6.1 Facility Allocation Problem102
2.6.2 Problem Description of Multiobjective Human RMP104
2.6.3 Experimental Results of Multiobjective Human RMP105
2.7 Summary110

Chapter 3 Optimization for Multiobjective Assets RMP by Multistage GA112
3.1 Introduction112
3.2 Problem Description113
3.2.1 There is Assets Resources Now113
3.2.2 The Data in the Past113
3.2.3 The Problem of Enterprise Boss Expects to be Solved114
3.3 Mathematical Model of Multiobjective Assets RMP115
3.4 Experimental Results and Discussion in First Part122
3.4.1 Experiments Results in the First Part122
3.4.2 Discussion in First Part125
3.5 Experimental Results and Discussion in Second Part134
3.5.1 Experimental Results in Second Part134
3.5.2 Discussion in Second Part139
3.6 Summary144

Chapter 4 Multistage GA for Optimization of Multiobjective Capital RMP149
4.1 Introduction149
4.2 Mathematical Model of Multiobjective Capital RMP153
4.3 Solution Approaches for Multiobjective Capital RMP155
4.3.1 Candidate Mutual Funds Selection155
4.3.2 Multistage Hybrid GA of Multiobjective Capital RMP156
4.3.3 Pareto Optimal Solution159
4.3.4 Adaptive Weight GA161
4.4 Numerical Example of Multiobjective Capital RMP164
4.4.1 Problem Description164
4.4.2 The Goal of the Problem Reached in Research166
4.4.3 Numerical Example of Multiobjective Capital RMP167
4.5 Discussion of Multiobjective Capital RMP175
4.6 Summary178

Chapter 5 Optimization of Staff Training RMP by Multistage GA182
5.1 Introduction182
5.2 Concepts of Competence Set183
5.3 Mathematical Model187
5.4 Solution Approaches by Multistage Hybrid GA191
5.4.1 Genetic Representation191
5.4.2 Evaluation193
5.4.3Selection193
5.5 Numerical Examples195
5.5.1 Problem Description195
5.5.2 The Goal of the Problem Reached in Research196
5.6 Summary209

Chapter 6 Conclusions and Future Research 213
6.1 Conclusions213
6.2 Future Research219

Glossary220
Notations220
Abbreviations222
Bibliography223
List of Publications231
International Journal Papers231
International Conference Papers with Review232

Index235

List of Figure
Figure 1.1: The Flow Chart of Genetic Algorithm11
Figure 1.2: Procedure-code of Basic GA12
Figure 1.3: Coding Space and Solution Space17
Figure 1.4: Feasibility and Legality18
Figure 1.5: The Mapping from Chromosomes to Solutions21
Figure 1.6: An Example of One-cut Point Crossover Operation24
Figure 1.7: Procedure-code of One-cut Point Crossover Operation25
Figure 1.8: An Example of Mutation Operation by Random27
Figure 1.9: An Example of Mutation Operation by Random27
Figure 1.10: Procedure-code of Multiobjective GA54
Figure 2.1: Proposed Structure of Resource Management Solution System72
Figure 2.2: Proposed a Flowchart of Resource Management Solution System73
Figure 2.3: An Example of Complex Multistage Network Framework74
Figure 2.4: Representation of Multistage Network Approach for RMP75
Figure 2.5: Representation Process for RMP83
Figure 2.6: Representation Process for RMP84
Figure 2.7: A Multistage Network of Human RMP90
Figure 2.8: The Code of Random Key-based Encoding in Procedure 194
Figure 2.9: The Code of Weight Generating in Procedure 295
Figure 2.10: An Example of Weight Generating96
Figure 2.11: An Example of One-cut Point Crossover Operator96
Figure 2.12: The Example of Insertion Mutation98
Figure 2.13: Proposed Structure of a Chromosome100
Figure 2.14: An Example   of Optimal Allocation Path101
Figure 2.15: Proposed Chromosome Structure for Four Stages Allocation Path101
Figure 2.16: The Pareto Optimal Solutions of Weighted-sum Method107
Figure 2.17: The Pareto Optimal Solutions of Proposed Method108
Figure 3.1: An Example of Complex Multistage Network Framework114
Figure 3.2: The Path Process of Two Objectives in Each Node119
Figure 3.3: Simulation Results for Multiobjective Assets RMP121
Figure 3.4: The Simulation Results of pri-GA124
Figure 3.5: The Simulation Results of msh-GA124
Figure 3.6: Preference Solutions with Pareto Optimal Solutions by pri-GA137
Figure 3.7: Preference Solutions with Pareto Optimal Solutions by msh-GA137
Figure 4.1: Simple Case with Two Objectives160
Figure 4.2: The Procedure of Pareto GA161
Figure 4.3: Adaptive Weights and Adaptive Hyperplane163
Figure 4.4: The Process Path of Two Objectives in Each Node168
Figure 4.5: An Example for Multiobjective Capital RMP169
Figure 4.6: Experiment Results by Two Methods172
Figure 5.1: The Cost Function of CSE184
Figure 5.2: CSE in Multistage Network Model186
Figure 5.3: An Example of State Permutation Encoding for CSE Operation.192
Figure 5.4: An Example of State Permutation Decoding for CSE Operation.192
Figure 5.5: An Example of Evaluation for CSE193
Figure 5.6: An Example of Selection for CSE193
Figure 5.7: The Procedure of msh-GA for Multistage CSE194
Figure 5.8: An Example of CSE for Staff Training RMP198
Figure 5.9: The Process Path of Two Objectives in Each Arc199
Figure 5.10: A Solution Example of Pareto Optimal Solutions for CSE200
Figure 5.11: Simulation Results of CSE for Staff Training RMP205

List of Table
Table 2.1: Transportation Costs102
Table 2.2: Maintenance Costs of Each Facility102
Table 2.3: The Parameters Setting of Experiment102
Table 2.4: Transportation Amounts from Each Facility to Each Consumer103
Table 2.5: Total Cost of Facility Allocate Transportation by Two Methods103
Table 2.6: An Example of Expected Wage of Programmer (Workers)106
Table 2.7: An Example of Expected Product Number of Task (Job)106
Table 2.8: The Parameter Settings of Experiment106
Table 2.9: Experiment Results of Two Methods108
Table 2.10: Experiment Results of Overall Average by Two Methods109
Table 3.1: The Data of the Company in the Past 4 Years117
Table 3.2: An Example of Expected Cost in 4 Districts  118
Table 3.3: An Example of Expected Selling Goods in 4 Districts118
Table 3.4: The Total Number of Feasible Solutions for Process Planning120
Table 3.5: The Parameter Settings of Experiment122
Table 3.6: Experiment Rs of the Pareto Optimal Solutions123
Table 3.7: Experiment Result of Two Methods125
Table 3.8: Same Preference Solution for Minimum Cost127
Table 3.9: Same Preference Solution for Maximum Selling Goods Number129
Table 3.10: Preference for Golden Mean within Pareto Optimal Solutions131
Table 3.11: The Parameter Settings of msh-GA136
Table 3.12: Experiment Results for Pareto Optimal Solutions138
Table 3.13: Preference for Golden Mean within Pareto Optimal Solutions141
Table 4.1: 3-months and 12-months Return Rates for 60 Sample Companies165
Table 4.2: Reordering Data Sets of Mutual Funds165
Table 4.3: The Total Number of Feasible Solutions for Process Planning169
Table 4.4: The Covariance Matrix170
Table 4.5: The Parameters Setting of Experiment170
Table 4.6: Experiment Results of Pareto Optimal Solutions by Two Methods171
Table 4.7: Experiment Results for the Optimal Portfolio174
Table 4.8: The Optimal Portfolio Solution of Sharpe Ratio174
Table 5.1: Total Numbers of Feasible Solutions for CSE200
Table 5.2: An Example of Data for CSE203
Table 5.3: Parameters Settings204
Table 5.4: Pareto Optimal Solutions for Multiobjective CSE204
Table 5.5: Experiment Results of the Pareto Optimal Solutions207
Table 5.6: Experiment Results of Pareto Optimal Solutions208

 

Abstract

  Multiobjective Resource Management Problems (m-RMP) involves deciding how to divide a resource of limited availability among multiple demands in a way that optimizes current objectives. RMP is widely used to plan the optimal allocating or management resources process among various projects or business units for the maximum product and the minimum cost. “Resources” might be manpower, assets, raw materials, capital or anything else in limited supply.

  The solution method of RMP, however, has its own problems; this thesis identifies four of them along with the proposed methods to solve them. Mathematical models combined with effective multistage Genetic Algorithm (GA) approach help to develop a method for handling the m-RMP. The proposed approach not only can solve relatively large size problems but also has better performance than the conventional GA. And the proposed method provides more flexibility to m-RMP model which is the key to survive under severely competitive environment. We also believe that the proposed method can be adapted to other production-distribution planning and all m-RAP models.

  In this thesis, four problems with m-RMP models will be clearly outlined and a multistage hybridized GA method for finding the best solution is then implemented. Comparison results with the conventional GA methods are also presented. This study also mentions several useful combinatorial optimization models in process system and proposed effective solution methods by using multistage GA. In the areas of future research, the methods outlined in this study might be applied to combinatorial optimization of m-RMP involving areas of education, portfolio selection or areas of industrial engineering design, product process planning system amongst many others.

 

詳細資料

  • ISBN:9789866231483
  • 規格:平裝 / 258頁 / 16k菊 / 14.8 x 21 cm / 普通級 / 單色印刷 / 初版
  • 出版地:台灣
  • 本書分類:> >

 

 

作者:鄭州人民醫院 主管藥師 內分泌專業臨床藥師 郭倩倩 新冠肺炎疫情之下,慢病患者在做好居家防護避免感染的同時,如何在藥師指導下,做好自己的用藥和健康管理顯得尤為重要。希望《新冠肺炎疫情之下慢病管理七日談》系列,能對各位慢病患者提供有益的幫助。此系列科普短文得到了中國藥師協會患者教育工作委員會和居家藥學服務藥師分會專家的審稿支持。 ... 新型冠狀病毒來勢洶洶,人群普遍易感。1月24日著名醫學雜誌《柳葉刀》發表的論文中介紹了41例新冠肺炎患者的疾病特點,具有基礎疾病的中老年人群是本次疫情中的易感人群。其中合併糖尿病、高血壓、冠心病等慢性病者占32%,死亡占46%。尤其糖尿病患者比例高達20%,感染的高發可能源於此類人群免疫功能的低下。因此在新冠肺炎疫情下慢病患者的用藥管理尤為重要,今天的「慢病藥物管理七日談」中我們首先來談談糖尿病患者的用藥管理。 疫情期間糖尿病患者的生活規律可能會被打亂,如因居家造成運動減少、三餐不規律等原因,有可能會增加糖尿病患者的血糖波動。因此,疫情期間,糖尿病患者應比平時更為嚴格控制自己的血糖,做到堅持用藥,控制血糖,儘可能減少因急性併發癥的發作去醫院就診的次數,從而避免交叉感染。 糖尿病患者之藥物干預 1、口服降糖藥物治療 在合理飲食和運動基礎上,藥物治療非常重要。間斷用藥或暫停用藥會造成血糖突然升高,甚至引起酮癥酸中毒、高滲性昏迷等糖尿病急性併發癥。因此對於服用口服降糖藥的患者應按照既往醫師給予的處方按時按量服用,使血糖控制在一個平穩的目標範圍內。良好的血糖控制不僅有助於維持機體環境,抵抗新冠病毒感染,而且有利於延緩糖尿病併發癥的發生,提高生活質量。 然而有些患者的降糖藥吃完了怎麼辦?目前仍然處於疫情高發期,應該去哪裡買藥呢?我們建議糖尿病患者應優先選擇步行距離較近的衛生服務中心、藥店取藥,出門前最好電話詢問是否有藥再出行,同時加強防護。有條件的醫院還開通了網際網路醫院,採用線上開藥、線上記帳、快遞配送的方式,方便慢病患者續開藥物。在這個特殊時期,仍然要規律、堅持按醫囑規範用藥。 2、胰島素治療 對於使用胰島素控制血糖的患者,居家時可能會面臨血糖波動需要調整胰島素用量。從用藥安全的角度考慮,最好在專科醫師的指導下調整胰島素劑量,當前非常時期可以選擇正規的網上問診平臺。在調整胰島素劑量時,應注意以下幾點: (2)調整頻率不宜太頻繁。建議每3-4天調整1次,不建議每天調整劑量。 (3)應在飲食和運動保持相對平衡的基礎上調整胰島素劑量。 (4)調整胰島素的同時要加強血糖監測。還需注意為避免在家打胰島素針後,未及時就餐出現頭暈、心慌、出汗等低血糖癥狀,身邊要常備糖果、餅乾等食品,一旦出現低血糖癥狀時及時服上一塊,防止昏迷。。 糖尿病患者之非藥物干預 1、血糖監測: 為了解全天的血糖變化情況,患者應當監測包括三餐前、三餐後2小時、睡前的血糖。 2、合理營養: 飲食種類應多樣化,建議以穀類為主,粗細搭配,多吃蔬菜水果,魚蛋奶類等,少油少鹽,均衡營養。 3、規律運動: 疫情期間應減少外出,而糖尿病患者在家裡仍要維持規律的運動,如室內快走、保健操、太極拳等,避免過於劇烈的運動。 疫情期間,為避免外出,藥物吃完了可以先暫時停藥嗎? 當然是不可以的。暫停用藥會造成血糖突然升高,甚至引起糖尿病急性併發癥。特殊時期仍然要按時按量服用降糖藥物,平穩控制血糖水平。 我們建議患者或其健康家人攜帶上次的藥物處方優先選擇步行距離較近的社區醫院、藥店買藥,同時應佩戴口罩等做好個人防護。 如果忘記吃降糖藥了需要補服嗎? 若漏服的是格列齊特、格列美脲、格列喹酮等磺脲類藥物,且已接近下一頓飯,無需再補;若是二甲雙胍類藥物,可以即刻補上;若是阿卡波糖,瑞格列奈等,飯中、飯後可以補上,飯後過很長時間了無需再補。 如何自行居家調整胰島素用量? 建議儘量在專業醫師指導下調整,當前特殊時期若無就診途徑居家調整胰島素時,應注意:在飲食和運動相對平衡的基礎上調整胰島素劑量,每次調整幅度不宜過大(2-3單位為佳);不建議每天調整劑量(每3-4天調整1次為佳) 新型冠狀病毒疫情形勢嚴峻,疫情期間糖尿病患者應比一般人採取更為嚴格的防控措施,應減少外出,重視居家防疫,同時放鬆心情,堅持用藥,做好血糖監測,平穩度過這段非常時期。 希望您遠離疫情,早日康復! 遠離新冠病毒小貼士: 酒精的有效成分是乙醇,屬於甲類火災危險品,空氣中乙醇濃度超過3%即可發生火災,在大量使用酒精時,酒精揮發使室內空氣中乙醇濃度增加,比直接點燃酒精更危險。因此,酒精以濃度75%為宜,若購買濃度90%的酒精,使用前按說明書稀釋。可以使用酒精直接擦拭門把手、桌面、電梯按鈕等,但不要大量噴灑於空氣中或身體上或對衣物噴灑消毒。 審稿專家:鄭州人民醫院 副主任藥師 藥學部兼發展規劃部主任 陳楠 以上為「藥品安全合作聯盟」志願者的原創作品,如若轉載請註明作者和來源! 【藥盾公益】以中國非處方藥物協會、中國藥學會,中華醫學會等共同發起和成立的公益性組織——PSM藥盾公益(公眾號:PSMChina),廣匯資源,凝聚力量,促進公眾用藥安全。

 

 

WEFV2626EFCEYYYB15VEF

 

 

 

文章來源取自於:

 

 

壹讀 https://read01.com/RMGzzeo.html

博客來 https://www.books.com.tw/exep/assp.php/888words/products/0010562465

如有侵權,請來信告知,我們會立刻下架。

DMCA:dmca(at)kubonews.com

聯絡我們:contact(at)kubonews.com


大雅頭皮護理專業染髮燙髮髮廊烏日美式風格的質感男仕理髮學生染髮推薦髮廊外埔韓系厚瀏海推薦染髮髮廊龍井染出滿意的髮色推薦髮廊
新社髮根蓬鬆燙推薦染髮髮廊 台中中區減齡的燙髮風格推薦染髮髮廊 霧面質感台中染髮推薦外埔染髮推薦專業剪髮推薦髮廊 太平髮色去色處理學生染髮推薦髮廊 台中質感色系商業髮色專業髮廊台中西區電棒燙專業染髮燙髮髮廊 大甲日韓髮型推薦染髮店 布丁頭的救星推薦台中髮廊勤美誠品附近英倫風格的質感男仕理髮推薦染髮髮廊 南屯及肩直髮上班族染髮推薦髮廊 台中Dcard燙髮推薦

arrow
arrow
    全站熱搜
    創作者介紹
    創作者 這產品真的優 的頭像
    這產品真的優

    這產品真的優

    這產品真的優 發表在 痞客邦 留言(0) 人氣()